Complete Git Workflow Guide

A comprehensive, structured guide to Git fundamentals and workflows

Federica Gazzelloni

2026-01-29

Table of contents

1 1. Understanding Terminal and Shell

1.1 What’s the Difference?

1.2 Shell Types by Platform

1.3 Check Your Current Shell o
2 2. Git Fundamentals

2.1 Core Concept v v v i
3 3. Initial Setup (One-Time Configuration)

3.1 Set Your Identity

3.2 Optional: Set Default Editor
4 4. Creating Your First Repository

4.1 Step-by-Step Workflow
5 5. Working with Files

5.1 Creating and Adding Files L.

5.2 Checking Status L
6 6. Staging and Committing

6.1 The Three States

6.2 Commands e

7 7. Viewing History

7.1 Log Commands i
8 8. Undoing Changes
8.1 Decision Tree L
8.2 Commands
8.2.1 Discard Unstaged Changes
8.2.2 Unstage Files (Keep Changes)
8.2.3 Undo Commits
8.2.4 Recover File from Specific Commit

9 9. Quick Reference Table

10 10. Advanced Operations
10.1 Stashing Changes L
10.2 File Operations

10
10
10

11
11

12
12
12
12
12
13
13

14

10.3 Interactive Rebase

11 11. Branches

11.1 Why Use Branches?
11.2 Branch Commands

12 12. Complete Workflow Example

12.1 Feature Development Workflow

13 13. Repository Management

13.1 Remove Git Repository
13.2 Check Repository Structure

14 14. Finding Git Repositories

14.1 Search Your System

15 15. Working with GitHub (Remote Repository)

15.1 Adding a Remote Repository
15.2 Cloning a Repository
15.3 Syncing with Remote

16 16. Local Backup Strategy

16.1 Create Bare Repository Backup
16.2 Why Use Bare Repositories for Backups?

17 17. Essential Git Operations (Local)

17.1 Fast Local Commands

18 18. Common Git Workflows

18.1 Daily Development Workflow
18.2 Hotfix Workflow

19 19. Best Practices

19.1 Commit Messages
19.2 When to Commit

20 20. Troubleshooting

20.1 Common Issues

21 21. Summary Cheat Sheet

21.1 Essential Commands

22 22. Next Steps

22.1 Continue Learning

17
17
17

19
19

21
21
21

22
22

23
23
23
24

25
25
25

26
26

27
27
28

29
29
29

30
30

31
31

33

1 1. Understanding Terminal and Shell

1.1 What’s the Difference?

Terminal = The window/container
Shell = The interpreter running inside that window

The shell provides a command-line interface (CLI) for Unix-like operating systems to interact

with your machine.

1.2 Shell Types by Platform

Platform Default Shell Notes

macOS Zsh Default since
Catalina (10.15)

RStudio Bash Older shell, still
common

Windows PowerShell/CMD Git typically used
via WSL
(Windows

Subsystem for

Linux)

1.3 Check Your Current Shell

echo $SHELL

Expected output: - /bin/zsh (macOS) - /bin/bash (RStudio, Linux)

2 2. Git Fundamentals

2.1 Core Concept

Git works completely locally. - No GitHub required - No registration needed - No

internet connection needed

A Git repository = A folder containing a hidden .git directory

3 3. Initial Setup (One-Time Configuration)

3.1 Set Your ldentity

Every commit is labeled with author information:

Set your name

git config --global user.name "Your Name"

Set your email

git config --global user.email "you@example.com"
Verify configuration

git config --list

3.2 Optional: Set Default Editor

Use nano (beginner-friendly)

git config --global core.editor nano

Or use VS Code

git config --global core.editor '"code --wait"

Or use vim (default, more complex)

git config --global core.editor vim

4 4. Creating Your First Repository

4.1 Step-by-Step Workflow

1. Create a project folder
mkdir backup
cd backup

2. Check current directory

pwd

3. List contents (including hidden files)

1ls -a

4. Check Git status (will show error - not a repo yet)
git status

5. Initialize Git repository

git init

6. Verify .git was created
1s -a

Output:git

7. Check status again
git status

Output: On branch main, No commits yet

5 5. Working with Files

5.1 Creating and Adding Files

Method 1: Create empty file (bash/zsh)
touch test.txt

Method 2: Create file with content
echo "Hello Git!" > test.txt

Method 3: Use text editor
nano test.txt

Type content

Save: Ctrl + 0, then Enter
Exit: Ctrl + X

Alternative: vim (more complex)

vim test.txt

Press 'i' to insert text

Type content

Press ESC, then type :wq to save and quit

5.2 Checking Status

See what files changed
git status

View detailed differences
git diff

Diff for specific file

git diff test.txt

Word-by-word diff (easier to read)
git diff --color-words test.txt

6 6. Staging and Committing

6.1 The Three States

Working Directory -+ Staging Area -+ Repository
4 i 1
(modified) (staged) (committed)

6.2 Commands

Stage specific file
git add test.txt

Stage all changes
git add .

Commit staged changes
git commit -m "Add test file"

Stage and commit in one step (tracked files only)

git commit -a -m "Update test notes"

Amend last commit (change message or add files)

git commit --amend -m "Corrected commit message"

10

7 7. Viewing History

7.1 Log Commands

Full commit history
git log

Compact one-line format

git log --omeline

Visual branch graph
git log --graph --oneline --all

Show changes in specific commit

git show <sha>

Show last 5 commits

git log --oneline -5

Show commits by specific author

git log ——author="Your Name"

Example output:

alb2c3d (HEAD -> main) Add new feature
e4f5g6h Update documentation
i7j8k91 Initial commit

11

8 8. Undoing Changes

8.1 Decision Tree

Have you committed yet?
NO -+ Use git restore
YES -+ Is it pushed to remote?
NO - Use git reset

YES -+ Use git revert

8.2 Commands
8.2.1 Discard Unstaged Changes

Restore single file to last commit

git restore test.txt

Restore all files
git restore .

8.2.2 Unstage Files (Keep Changes)

Unstage specific file
git restore --staged test.txt

Unstage all

git restore --staged .

12

8.2.3 Undo Commits

Method 1: Soft reset (keep changes staged)
git reset --soft HEAD~1

Method 2: Mixed reset (keep changes unstaged)
git reset HEAD~1

Method 3: Hard reset (discard all changes)
git reset --hard HEAD~1

Method 4: Revert (safe for shared repos)

git revert <sha>

8.2.4 Recover File from Specific Commit

View history to find commit

git log --oneline

Restore file from that commit
git checkout <sha> -- test.txt

13

9 9. Quick Reference Table

Scenario

Command

Result

Unstage file

Discard changes
Undo last commit
Safe undo (public)
Edit commit history

git

git
git
git
git

reset <file>

restore <file>
reset --soft HEAD-~1
revert <sha>

rebase -i HEAD-~3

Removes from staging
area

Reverts to last commit
Keeps changes staged

Creates new commit

Rewrites last 3 commits

14

10 10. Advanced Operations

10.1 Stashing Changes

Temporarily save uncommitted changes

git stash

View stashed changes

git stash list

Apply most recent stash
git stash apply

Apply and remove stash
git stash pop

Clear all stashes

git stash clear

10.2 File Operations

Remove file from Git and filesystem

git rm <file>

Remove from Git, keep in filesystem

git rm --cached <file>

Rename/move file

git mv <old-name> <new-name>

15

10.3 Interactive Rebase

Edit last 3 commits
git rebase -i HEAD~3

Opens editor with options:

pick = use commit

reword = change commit message

edit = modify commit

squash = combine with previous commit
drop = remove commit

Editor workflow: 1. Press i to start editing (vim) 2. Make changes 3. Press ESC 4. Type
:wq to save and quit

16

11 11. Branches

11.1 Why Use Branches?

e Develop features independently

e Experiment without affecting main code
e Collaborate with team members

e Maintain multiple versions

11.2 Branch Commands

List all branches
git branch

Create new branch
git branch feature-navbar

Switch to branch
git checkout feature-navbar
Or (newer syntax):

git switch feature-navbar

Create and switch in one command

git checkout -b feature-navbar

Merge branch into current branch

git merge feature-navbar

Delete branch
git branch -d feature-navbar

Force delete (unmerged changes)

17

git branch -D feature-navbar

View all branches (including remote)

git branch -a

18

12 12. Complete Workflow Example

12.1 Feature Development Workflow

1. Initialize repository
git init my-project
cd my-project

2. Create and edit files
echo "Hello World" > index.html

3. Check status
git status

4. Stage and commit
git add index.html

git commit -m "Initial commit"

5. Create feature branch

git checkout -b feature-navbar

6. Make changes

echo "<nav>Navigation</nav>" >> index.html
7. Stage and commit changes
git add index.html

git commit -m "Add navigation bar"

8. Switch back to main branch
git checkout main

9. Merge the feature branch

git merge feature-navbar

19

10. View history
git log --oneline --graph --all

11. Delete feature branch (cleanup)

git branch -d feature-navbar

12. Verify
git branch

20

13 13. Repository Management

13.1 Remove Git Repository
Remove Git (keep files)
rm -rf .git

Remove everything (dangerous!)

rm -rf *

13.2 Check Repository Structure

In Terminal:

Visualize project tree

tree -a -L 2
In RStudio (R code):

View directory tree
fs::dir_tree(all = TRUE, recurse = 1)

21

14 14. Finding Git Repositories

14.1 Search Your System

Find all Git repositories on your machine

find ~ -type d -name ".git" -prune 2>/dev/null | sed 'sl|/.gitl||"'

What it does: - Searches from home directory (~) - Finds directories named .git - Removes

.git from output to show parent folder - Hides permission errors

22

15 15. Working with GitHub (Remote
Repository)

15.1 Adding a Remote Repository

Add GitHub as remote

git remote add origin https://github.com/username/repo-name.git

Verify remote connection

git remote -v

Rename branch to main (GitHub standard)

git branch -M main

Push to GitHub (first time)

git push -u origin main
Future pushes (after first time)

git push

15.2 Cloning a Repository

Clone existing repository

git clone <repository-url>

Clone with custom folder name

git clone <repository-url> custom-folder-name

Navigate into cloned repo

cd custom-folder—-name

23

Check remote configuration

git remote -v

15.3 Syncing with Remote

Push changes to remote
git push <remote> <branch>

Example: git push origin main

Pull changes from remote
git pull <remote> <branch>

Example: git pull origin main

Fetch changes without merging
git fetch origin

24

16 16. Local Backup Strategy

16.1 Create Bare Repository Backup

Navigate to your working project

cd ~/Projects/important-app

Create bare backup repository

git init --bare ~/Backups/important-app.git

Add backup as remote
git remote add backup ~/Backups/important-app.git

Push to backup
git push backup main

Push all branches and tags
git push backup --all
git push backup --tags

16.2 Why Use Bare Repositories for Backups?

o No working directory (saves space)
e Only Git database (pure backup)
o Can push/pull like any remote

e Local = fast and secure

25

17 17. Essential Git Operations (Local)

17.1 Fast Local Commands

Read local database (instant)
git log

Compare local versions (instant)
git diff

Create branch pointer (instant)

git branch new-feature

Save to local repo (instant)

git commit -m "Changes"

Why so fast? - Everything is local (no network) - No server communication needed - Full

history on your machine

26

18 18. Common Git Workflows

18.1 Daily Development Workflow

1. Start your day - update from remote

git pull origin main

2. Create feature branch

git checkout -b feature-login

3. Make changes
... edit files

4. Check what changed
git status
git diff

5. Stage changes
git add .

6. Commit with descriptive message

git commit -m "Add login form validation"

7. Push feature branch

git push origin feature-login
8. After code review/approval, merge to main
git checkout main

git merge feature-login

9. Push to remote

git push origin main

27

10. Clean up
git branch -d feature-login

18.2 Hotfix Workflow

1. Critical bug found in production

git checkout main

2. Create hotfix branch
git checkout -b hotfix-critical-bug

3. Fix the bug
... edit files

4. Commit fix
git add .
git commit -m "Fix critical authentication bug"

5. Merge back to main
git checkout main

git merge hotfix-critical-bug

6. Deploy/push

git push origin main

7. Clean up
git branch -d hotfix-critical-bug

28

19 19. Best Practices

19.1 Commit Messages

Good commit messages:

git commit -m "Add user authentication"
git commit -m "Fix database connection timeout"

git commit -m "Update documentation for API endpoints"

Bad commit messages:

git commit -m "fix"
git commit -m "changes"
git commit -m "asdf"

git commit -m "stuff"

19.2 When to Commit

Commit when: - Feature is complete and working - Bug is fixed - Logical unit of work

is done - Tests pass - Code is reviewed

Don’t commit: - Broken code - Half-finished features - Debugging code (console.log,

print statements) - Sensitive data (passwords, API keys)

29

20 20. Troubleshooting

20.1 Common lIssues

Issue: Commit rejected

Error: Updates were rejected
Solution: Pull first, then push
git pull origin main

git push origin main
Issue: Merge conflict

Error: Automatic merge failed
Solution: Resolve manually

1. Open conflicted files

2. Edit to resolve conflicts
3. Stage resolved files

git add <resolved-file>

git commit -m "Resolve merge conflict"

Issue: Accidentally committed wrong files

Solution: Undo last commit

git reset --soft HEAD~1

Files are unstaged, make corrections
git add <correct-files>

git commit -m "Correct commit"

30

21 21. Summary Cheat Sheet

21.1 Essential Commands

Setup

git init # Initialize repository
git config --global user.name # Set name

git config --global user.email # Set email

Basic workflow

git status # Check status
git add <file> # Stage file
git add . # Stage all
git commit -m "message" # Commit

git log --oneline # View history

Undoing

git restore <file> # Discard changes
git restore —-staged <file> # Unstage

git reset --soft HEAD~1 # Undo commit

git revert <sha> # Safe undo

Branches

git branch # List branches

git checkout -b <name> # Create and switch
git merge <branch> # Merge branch

git branch -d <branch> # Delete branch

Remote

git remote add origin <url>
git push -u origin main

git push

git pull

= ¥ H

Add remote
First push

Subsequent pushes

Pull changes

31

git clone <url> # Clone repository

32

22 22. Next Steps

22.1 Continue Learning

Practice locally without GitHub

Create test repositories to experiment

Use branches for different features

Read commit messages in open-source projects
Explore .git directory to understand internals
Try interactive rebase to clean up history

NS Ote WD

Set up local backups with bare repositories

Master Git locally first, then add GitHub later!

33

	1. Understanding Terminal and Shell
	What's the Difference?
	Shell Types by Platform
	Check Your Current Shell

	2. Git Fundamentals
	Core Concept

	3. Initial Setup (One-Time Configuration)
	Set Your Identity
	Optional: Set Default Editor

	4. Creating Your First Repository
	Step-by-Step Workflow

	5. Working with Files
	Creating and Adding Files
	Checking Status

	6. Staging and Committing
	The Three States
	Commands

	7. Viewing History
	Log Commands

	8. Undoing Changes
	Decision Tree
	Commands
	Discard Unstaged Changes
	Unstage Files (Keep Changes)
	Undo Commits
	Recover File from Specific Commit

	9. Quick Reference Table
	10. Advanced Operations
	Stashing Changes
	File Operations
	Interactive Rebase

	11. Branches
	Why Use Branches?
	Branch Commands

	12. Complete Workflow Example
	Feature Development Workflow

	13. Repository Management
	Remove Git Repository
	Check Repository Structure

	14. Finding Git Repositories
	Search Your System

	15. Working with GitHub (Remote Repository)
	Adding a Remote Repository
	Cloning a Repository
	Syncing with Remote

	16. Local Backup Strategy
	Create Bare Repository Backup
	Why Use Bare Repositories for Backups?

	17. Essential Git Operations (Local)
	Fast Local Commands

	18. Common Git Workflows
	Daily Development Workflow
	Hotfix Workflow

	19. Best Practices
	Commit Messages
	When to Commit

	20. Troubleshooting
	Common Issues

	21. Summary Cheat Sheet
	Essential Commands

	22. Next Steps
	Continue Learning

