
Complete Git Workflow Guide
A comprehensive, structured guide to Git fundamentals and workflows

Federica Gazzelloni

2026-01-29

Table of contents

1 1. Understanding Terminal and Shell 4
1.1 What’s the Difference? . 4
1.2 Shell Types by Platform . 4
1.3 Check Your Current Shell . 4

2 2. Git Fundamentals 5
2.1 Core Concept . 5

3 3. Initial Setup (One-Time Configuration) 6
3.1 Set Your Identity . 6
3.2 Optional: Set Default Editor . 6

4 4. Creating Your First Repository 7
4.1 Step-by-Step Workflow . 7

5 5. Working with Files 8
5.1 Creating and Adding Files . 8
5.2 Checking Status . 8

6 6. Staging and Committing 10
6.1 The Three States . 10
6.2 Commands . 10

7 7. Viewing History 11
7.1 Log Commands . 11

8 8. Undoing Changes 12
8.1 Decision Tree . 12
8.2 Commands . 12

8.2.1 Discard Unstaged Changes . 12
8.2.2 Unstage Files (Keep Changes) . 12
8.2.3 Undo Commits . 13
8.2.4 Recover File from Specific Commit . 13

9 9. Quick Reference Table 14

10 10. Advanced Operations 15
10.1 Stashing Changes . 15
10.2 File Operations . 15

2

10.3 Interactive Rebase . 16

11 11. Branches 17
11.1 Why Use Branches? . 17
11.2 Branch Commands . 17

12 12. Complete Workflow Example 19
12.1 Feature Development Workflow . 19

13 13. Repository Management 21
13.1 Remove Git Repository . 21
13.2 Check Repository Structure . 21

14 14. Finding Git Repositories 22
14.1 Search Your System . 22

15 15. Working with GitHub (Remote Repository) 23
15.1 Adding a Remote Repository . 23
15.2 Cloning a Repository . 23
15.3 Syncing with Remote . 24

16 16. Local Backup Strategy 25
16.1 Create Bare Repository Backup . 25
16.2 Why Use Bare Repositories for Backups? . 25

17 17. Essential Git Operations (Local) 26
17.1 Fast Local Commands . 26

18 18. Common Git Workflows 27
18.1 Daily Development Workflow . 27
18.2 Hotfix Workflow . 28

19 19. Best Practices 29
19.1 Commit Messages . 29
19.2 When to Commit . 29

20 20. Troubleshooting 30
20.1 Common Issues . 30

21 21. Summary Cheat Sheet 31
21.1 Essential Commands . 31

22 22. Next Steps 33
22.1 Continue Learning . 33

3

1 1. Understanding Terminal and Shell

1.1 What’s the Difference?

Terminal = The window/container
Shell = The interpreter running inside that window

The shell provides a command-line interface (CLI) for Unix-like operating systems to interact
with your machine.

1.2 Shell Types by Platform

Platform Default Shell Notes

macOS Zsh Default since
Catalina (10.15)

RStudio Bash Older shell, still
common

Windows PowerShell/CMD Git typically used
via WSL
(Windows
Subsystem for
Linux)

1.3 Check Your Current Shell

echo $SHELL

Expected output: - /bin/zsh (macOS) - /bin/bash (RStudio, Linux)

4

2 2. Git Fundamentals

2.1 Core Concept

Git works completely locally. - � No GitHub required - � No registration needed - � No
internet connection needed

A Git repository = A folder containing a hidden .git directory

5

3 3. Initial Setup (One-Time Configuration)

3.1 Set Your Identity

Every commit is labeled with author information:

Set your name
git config --global user.name "Your Name"

Set your email
git config --global user.email "you@example.com"

Verify configuration
git config --list

3.2 Optional: Set Default Editor

Use nano (beginner-friendly)
git config --global core.editor nano

Or use VS Code
git config --global core.editor "code --wait"

Or use vim (default, more complex)
git config --global core.editor vim

6

4 4. Creating Your First Repository

4.1 Step-by-Step Workflow

1. Create a project folder
mkdir backup
cd backup

2. Check current directory
pwd

3. List contents (including hidden files)
ls -a

4. Check Git status (will show error - not a repo yet)
git status

5. Initialize Git repository
git init

6. Verify .git was created
ls -a
Output:git

7. Check status again
git status
Output: On branch main, No commits yet

7

5 5. Working with Files

5.1 Creating and Adding Files

Method 1: Create empty file (bash/zsh)
touch test.txt

Method 2: Create file with content
echo "Hello Git!" > test.txt

Method 3: Use text editor
nano test.txt
Type content
Save: Ctrl + O, then Enter
Exit: Ctrl + X

Alternative: vim (more complex)
vim test.txt
Press 'i' to insert text
Type content
Press ESC, then type :wq to save and quit

5.2 Checking Status

See what files changed
git status

View detailed differences
git diff

Diff for specific file

8

git diff test.txt

Word-by-word diff (easier to read)
git diff --color-words test.txt

9

6 6. Staging and Committing

6.1 The Three States

Working Directory → Staging Area → Repository
↓ ↓ ↓

(modified) (staged) (committed)

6.2 Commands

Stage specific file
git add test.txt

Stage all changes
git add .

Commit staged changes
git commit -m "Add test file"

Stage and commit in one step (tracked files only)
git commit -a -m "Update test notes"

Amend last commit (change message or add files)
git commit --amend -m "Corrected commit message"

10

7 7. Viewing History

7.1 Log Commands

Full commit history
git log

Compact one-line format
git log --oneline

Visual branch graph
git log --graph --oneline --all

Show changes in specific commit
git show <sha>

Show last 5 commits
git log --oneline -5

Show commits by specific author
git log --author="Your Name"

Example output:

a1b2c3d (HEAD -> main) Add new feature
e4f5g6h Update documentation
i7j8k9l Initial commit

11

8 8. Undoing Changes

8.1 Decision Tree

Have you committed yet?
�
�� NO → Use git restore
�
�� YES → Is it pushed to remote?

�
�� NO → Use git reset
�
�� YES → Use git revert

8.2 Commands

8.2.1 Discard Unstaged Changes

Restore single file to last commit
git restore test.txt

Restore all files
git restore .

8.2.2 Unstage Files (Keep Changes)

Unstage specific file
git restore --staged test.txt

Unstage all
git restore --staged .

12

8.2.3 Undo Commits

Method 1: Soft reset (keep changes staged)
git reset --soft HEAD~1

Method 2: Mixed reset (keep changes unstaged)
git reset HEAD~1

Method 3: Hard reset (� discard all changes)
git reset --hard HEAD~1

Method 4: Revert (safe for shared repos)
git revert <sha>

8.2.4 Recover File from Specific Commit

View history to find commit
git log --oneline

Restore file from that commit
git checkout <sha> -- test.txt

13

9 9. Quick Reference Table

Scenario Command Result

Unstage file git reset <file> Removes from staging
area

Discard changes git restore <file> Reverts to last commit
Undo last commit git reset --soft HEAD~1 Keeps changes staged
Safe undo (public) git revert <sha> Creates new commit
Edit commit history git rebase -i HEAD~3 Rewrites last 3 commits

14

10 10. Advanced Operations

10.1 Stashing Changes

Temporarily save uncommitted changes
git stash

View stashed changes
git stash list

Apply most recent stash
git stash apply

Apply and remove stash
git stash pop

Clear all stashes
git stash clear

10.2 File Operations

Remove file from Git and filesystem
git rm <file>

Remove from Git, keep in filesystem
git rm --cached <file>

Rename/move file
git mv <old-name> <new-name>

15

10.3 Interactive Rebase

Edit last 3 commits
git rebase -i HEAD~3

Opens editor with options:
pick = use commit
reword = change commit message
edit = modify commit
squash = combine with previous commit
drop = remove commit

Editor workflow: 1. Press i to start editing (vim) 2. Make changes 3. Press ESC 4. Type
:wq to save and quit

16

11 11. Branches

11.1 Why Use Branches?

• � Develop features independently
• � Experiment without affecting main code
• � Collaborate with team members
• � Maintain multiple versions

11.2 Branch Commands

List all branches
git branch

Create new branch
git branch feature-navbar

Switch to branch
git checkout feature-navbar
Or (newer syntax):
git switch feature-navbar

Create and switch in one command
git checkout -b feature-navbar

Merge branch into current branch
git merge feature-navbar

Delete branch
git branch -d feature-navbar

Force delete (unmerged changes)

17

git branch -D feature-navbar

View all branches (including remote)
git branch -a

18

12 12. Complete Workflow Example

12.1 Feature Development Workflow

1. Initialize repository
git init my-project
cd my-project

2. Create and edit files
echo "Hello World" > index.html

3. Check status
git status

4. Stage and commit
git add index.html
git commit -m "Initial commit"

5. Create feature branch
git checkout -b feature-navbar

6. Make changes
echo "<nav>Navigation</nav>" >> index.html

7. Stage and commit changes
git add index.html
git commit -m "Add navigation bar"

8. Switch back to main branch
git checkout main

9. Merge the feature branch
git merge feature-navbar

19

10. View history
git log --oneline --graph --all

11. Delete feature branch (cleanup)
git branch -d feature-navbar

12. Verify
git branch

20

13 13. Repository Management

13.1 Remove Git Repository

Remove Git (keep files)
rm -rf .git

Remove everything (� dangerous!)
rm -rf *

13.2 Check Repository Structure

In Terminal:

Visualize project tree
tree -a -L 2

In RStudio (R code):

View directory tree
fs::dir_tree(all = TRUE, recurse = 1)

21

14 14. Finding Git Repositories

14.1 Search Your System

Find all Git repositories on your machine
find ~ -type d -name ".git" -prune 2>/dev/null | sed 's|/.git||'

What it does: - Searches from home directory (~) - Finds directories named .git - Removes
.git from output to show parent folder - Hides permission errors

22

15 15. Working with GitHub (Remote
Repository)

15.1 Adding a Remote Repository

Add GitHub as remote
git remote add origin https://github.com/username/repo-name.git

Verify remote connection
git remote -v

Rename branch to main (GitHub standard)
git branch -M main

Push to GitHub (first time)
git push -u origin main

Future pushes (after first time)
git push

15.2 Cloning a Repository

Clone existing repository
git clone <repository-url>

Clone with custom folder name
git clone <repository-url> custom-folder-name

Navigate into cloned repo
cd custom-folder-name

23

Check remote configuration
git remote -v

15.3 Syncing with Remote

Push changes to remote
git push <remote> <branch>
Example: git push origin main

Pull changes from remote
git pull <remote> <branch>
Example: git pull origin main

Fetch changes without merging
git fetch origin

24

16 16. Local Backup Strategy

16.1 Create Bare Repository Backup

Navigate to your working project
cd ~/Projects/important-app

Create bare backup repository
git init --bare ~/Backups/important-app.git

Add backup as remote
git remote add backup ~/Backups/important-app.git

Push to backup
git push backup main

Push all branches and tags
git push backup --all
git push backup --tags

16.2 Why Use Bare Repositories for Backups?

• � No working directory (saves space)
• � Only Git database (pure backup)
• � Can push/pull like any remote
• � Local = fast and secure

25

17 17. Essential Git Operations (Local)

17.1 Fast Local Commands

Read local database (instant)
git log

Compare local versions (instant)
git diff

Create branch pointer (instant)
git branch new-feature

Save to local repo (instant)
git commit -m "Changes"

Why so fast? - Everything is local (no network) - No server communication needed - Full
history on your machine

26

18 18. Common Git Workflows

18.1 Daily Development Workflow

1. Start your day - update from remote
git pull origin main

2. Create feature branch
git checkout -b feature-login

3. Make changes
... edit files ...

4. Check what changed
git status
git diff

5. Stage changes
git add .

6. Commit with descriptive message
git commit -m "Add login form validation"

7. Push feature branch
git push origin feature-login

8. After code review/approval, merge to main
git checkout main
git merge feature-login

9. Push to remote
git push origin main

27

10. Clean up
git branch -d feature-login

18.2 Hotfix Workflow

1. Critical bug found in production
git checkout main

2. Create hotfix branch
git checkout -b hotfix-critical-bug

3. Fix the bug
... edit files ...

4. Commit fix
git add .
git commit -m "Fix critical authentication bug"

5. Merge back to main
git checkout main
git merge hotfix-critical-bug

6. Deploy/push
git push origin main

7. Clean up
git branch -d hotfix-critical-bug

28

19 19. Best Practices

19.1 Commit Messages

Good commit messages:

� git commit -m "Add user authentication"
� git commit -m "Fix database connection timeout"
� git commit -m "Update documentation for API endpoints"

Bad commit messages:

� git commit -m "fix"
� git commit -m "changes"
� git commit -m "asdf"
� git commit -m "stuff"

19.2 When to Commit

Commit when: - � Feature is complete and working - � Bug is fixed - � Logical unit of work
is done - � Tests pass - � Code is reviewed

Don’t commit: - � Broken code - � Half-finished features - � Debugging code (console.log,
print statements) - � Sensitive data (passwords, API keys)

29

20 20. Troubleshooting

20.1 Common Issues

Issue: Commit rejected

Error: Updates were rejected
Solution: Pull first, then push
git pull origin main
git push origin main

Issue: Merge conflict

Error: Automatic merge failed
Solution: Resolve manually
1. Open conflicted files
2. Edit to resolve conflicts
3. Stage resolved files
git add <resolved-file>
git commit -m "Resolve merge conflict"

Issue: Accidentally committed wrong files

Solution: Undo last commit
git reset --soft HEAD~1
Files are unstaged, make corrections
git add <correct-files>
git commit -m "Correct commit"

30

21 21. Summary Cheat Sheet

21.1 Essential Commands

Setup
git init # Initialize repository
git config --global user.name # Set name
git config --global user.email # Set email

Basic workflow
git status # Check status
git add <file> # Stage file
git add . # Stage all
git commit -m "message" # Commit
git log --oneline # View history

Undoing
git restore <file> # Discard changes
git restore --staged <file> # Unstage
git reset --soft HEAD~1 # Undo commit
git revert <sha> # Safe undo

Branches
git branch # List branches
git checkout -b <name> # Create and switch
git merge <branch> # Merge branch
git branch -d <branch> # Delete branch

Remote
git remote add origin <url> # Add remote
git push -u origin main # First push
git push # Subsequent pushes
git pull # Pull changes

31

git clone <url> # Clone repository

32

22 22. Next Steps

22.1 Continue Learning

1. Practice locally without GitHub
2. Create test repositories to experiment
3. Use branches for different features
4. Read commit messages in open-source projects
5. Explore .git directory to understand internals
6. Try interactive rebase to clean up history
7. Set up local backups with bare repositories

� Master Git locally first, then add GitHub later!

33

	1. Understanding Terminal and Shell
	What's the Difference?
	Shell Types by Platform
	Check Your Current Shell

	2. Git Fundamentals
	Core Concept

	3. Initial Setup (One-Time Configuration)
	Set Your Identity
	Optional: Set Default Editor

	4. Creating Your First Repository
	Step-by-Step Workflow

	5. Working with Files
	Creating and Adding Files
	Checking Status

	6. Staging and Committing
	The Three States
	Commands

	7. Viewing History
	Log Commands

	8. Undoing Changes
	Decision Tree
	Commands
	Discard Unstaged Changes
	Unstage Files (Keep Changes)
	Undo Commits
	Recover File from Specific Commit

	9. Quick Reference Table
	10. Advanced Operations
	Stashing Changes
	File Operations
	Interactive Rebase

	11. Branches
	Why Use Branches?
	Branch Commands

	12. Complete Workflow Example
	Feature Development Workflow

	13. Repository Management
	Remove Git Repository
	Check Repository Structure

	14. Finding Git Repositories
	Search Your System

	15. Working with GitHub (Remote Repository)
	Adding a Remote Repository
	Cloning a Repository
	Syncing with Remote

	16. Local Backup Strategy
	Create Bare Repository Backup
	Why Use Bare Repositories for Backups?

	17. Essential Git Operations (Local)
	Fast Local Commands

	18. Common Git Workflows
	Daily Development Workflow
	Hotfix Workflow

	19. Best Practices
	Commit Messages
	When to Commit

	20. Troubleshooting
	Common Issues

	21. Summary Cheat Sheet
	Essential Commands

	22. Next Steps
	Continue Learning

